c“t

Office of Naval Research

Contract Nonr-1866 (16) NR - 372-012

/ﬁational Aeronautics Space Administration
_ Grant NGR 22-007-068

7

SEQUENTIAL CODING SCHEMES FOR AN ADDITIVE
NOISE CHANNEL WITH A NOISY FEEDBACK LINK

[

i

[ — |

i}
=1
il
E=1

|

{

[

R.L. Kashyap

May 1966 — August 1966

Technical Report No. 508

"Reproduction in whole or in part is permitted by the U. 8.

Government. Distribution of this document is unlimited. »

Division of Engineering and Applied Physics

Harvard University < Cambridge ,Massachusetts



Office of Naval Research
Contract Nonr-1866(16)

NR -372 - 012

» SEQUENTIAL CODING SCHEMES FOR AN ADDITIVE

NOISE CHANNEL WITH A NOISY FEEDBACK LINK H

, by ,
§3 R. L. Kashyap (“‘1

(2 Teehnioal Vm}sos END

Reproduction in who r in permitted by the U. S|
Government. Distribution of this document is unlimited.

AP 986 ghaast, 1966 (. (10 0

L\ l;‘* i\%\‘m‘\_ AT
—

The research repcrted irn this document was supported by the U. S.

Army Research Office, the U. S. Air Force Office of Scientific

Research, and the U. S. Office of Naval Research under the J oint
Services Eiectronics Program by Contract Nonr-1866 (16), and by
NASA under Contract/NGR-22-007-068.\ T ’\

K a5 - R

4. Computation Laboratory ’5
Division of Engineering and Applied Physics
| Harvard University

“~:Cambridge, Massachusetts '




SEQUENTIAL CODING SCHEMES FOR AN ADDITIVE

NOISE CHANNEL WITH A NOISY FEEDBACK LINK*

R. L. Kashyap

Computation Laboratory
Harvard University

Cambridge, Massachusetts

ABSTRACT

A coding scheme for additive Gaussian channel is de-
veloped using a noisy feedback link and D-dimensional elementary
signals with no band width constraint. This allows error free
transmission at a rate R < Rc where RC is slightly less than the
channel capacity C. When there is no noise in the Feedback chan-
nel, the coding scheme reduces to a D-dimensional generalization of
the coding scheme of Schalkwijk and Kailath. In addition, the ex-
pression for the probability of error is determined when T, the
time of Transmission rate is finite. QOur scheme is also compared

with the best codes which use only the forward channel.

* This work was supported in part by NASA under Contract
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SEQUENTIAL CODING SCHEMES FOR AN ADDITIVE
NOISE CHANNEL WITH A NOISY FEEDBACK LINK

I. INTRODUCTION

We are interested in the transmission of messages over a noisy
channel using a noisy feedback channel which will be used to convey
the state of the uncertainty of the receiver to the transmitter. This model
is suitable for many of the communication problems. The only constraint
on the transmitted signals is their limited average power. The starting
point of our paper is the classical result due to Shannon [1] who showed
the existence of a coding scheme in which the probability of error can be
made arbitrarily small for a nonzero transmission rate. Specifically,
suppose that one has to transmit one of M messages during a period of

T seconds across a Gaussian channel with double sided spectral density

N
—23 with Pa.v being the average power constraint on the transmitted sig-
P
nals. Let R A transmission rate = {(tInM)/T) nats/sec and Pe opt(M, T,#)‘:
- b
o

Probability of error using the optimal coding scheme with a signal-to-noise

ratio PAV/NO' Then /

{

P 0 R<C
. AV ' .
L P M, T, —) = f
m e,OPt( » NO ) \ 1 t R>C

T-+00

where C = channel capacity = PAV/NO . A number of authors [2-6] have
investigated the transmission of messages over noisy channels using a noise-

less feedback link. Shannon [2] showed that the existence of a noiseless
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feedback link will not result in an increase in the channel capacity in the
forward direction. The recent striking contribution is due to Schalkwijk
and Kailath [6] who developed a coding scheme using noiseless feedback
link and one dimensional elementary signals which realizes a transmission
rate equal to the channel capacity and demonstrated its superiority over
best known conventional codes like the simplex codes [7]. However, if
there is noise in the feedback link, their coding scheme implies zero trans-
mission rate if we insist on zero probability of error.

The coding scheme cf this paper is obtained by considering the prob-
lem of information transmission on one of recursive estimation problem
both at the transmitter and the receiver. The main result is that messages
using D-dimensional elemeniary signals can be transmitted over a noisy
channel using a noisy feedback chanrel with zero probability of error at any
rate less than the critical rats Rc which is only slightily less than channel

capacity C of the forward channel

R ~ 1 Pav
c N
=\ /Nb ] '{’b °
1+ ~N + T
O o

where —5— inthe two-sided spectral density of the additive Gaussian noise
in the feedback link, and other symbols have been
defined earlier. In particular, when the noise in the feedback link is ab-
sent, the coding scheme becomes a generalization of the coding scheme in
reference [6] for D-dimensional signals. In addition, if the time of trans-

mission T is finite, expression will be derived for the probability of
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error and this scheme will be compared with the best codes (simplex

codes) which use only the forward channel.

II. CODING SCHEME
We will first convert the continuous time Gaussian . channel into

a discrete time Gaussian channel and describe the coding scheme in terms

of the latter.

1. Transformation of a continuous time Gaussian channel into

a discrete time channel.

Suppose one has to transmit one of the M messages belonging to the set

) o (m®, m@, L mM)

g s e

over a time T seconds. Let us assume a set of orthogonal elementary

signals t), ..... g (t) are available which satisfy the relation
g ’ s p Yy

[¢1 (t-ka) f (28 dt =808y, , ;5. .. p
k,t=1, ..., N
where A is the discretization interval. The actual signal transmitted is
s(t) N
s(t) = Z uT(i) g (t-iA)
i=1

where
Flie) = 00y By, ..., Fot))

WT(i) = (), ooenen , u (i) )

N = Largest integer less than or equal to (T/A). The vectors
u{(i), i=1,..., N are yet unknown and depend on the particular

message to be transmitted.

(1)
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Let the received signal be rl(t) and the additive white Gaussian

noise with spectral density -—29- .
rl(t) = s{t) + nl(t) (2)

E [nl(t) ]=0
T N (3)
E [nl(tl) ) (ty) ]= 520 (t] - t3)
The receiver computes a signal sz(t) on the basis of its measurements

and sends it back to the transmitter. Iet the noise in the feedback

channel be nz(t) which is white Gaussian and additive with spectral den-

sity 5 -
T,. .
5,(t) = ZN vo(i) #t-i A) (4)
i=1
ry(t) = s,(t) + nytt) (5)
E[n,(t)]=0
N, (6)

E [n,() ny(tz) 1= — 8 () - t,)
If we define the following vectors of dimension D
yli) & 5 rl(t) g (t-i4) dt
n(i) & § n (t)g (t-iA) dt
z(i) A S ro(t) g (t-i4) dt
gt & § ny0g 1m a
then the continuous time model represented by Figure 1 and equations

(2), (3), (5), (6) can be replaced by the discrete time model repre-

sented in Figure 2 and equations (7)-(9), with discretization interval A [7]
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y(i) = u(i) + n(i) (7)
z(i) = v(i) + §() (8)

n(i), § (i), i=l,.., N are white Gaussian random wectors with

(E(n(i)) =E (§(i)) =0

E(n(i) 0t () = 7 01 |
Nb (9)

oy wl:
E(&(i) §° () = -2 613 I

E(n(i) £1(j)) = 0

N
2 [0} 2 N
Let o‘n é ) and O-’g" A b

The problem is to determine the vectors u(i), i=l,..., N
that are to be sent at the transmitter and the vectors v(i), i=l,..., N
that are to be sent at the receiver so that error free transmission is
possible at a nonzero transmission rate. Of course, the vectors
u(i), v(i), i=l, 2,...., N, will depend on the particular message that
has to be sent to the receiver.

2. Description of coding scheme CS-1

Let us assume that the number M = MlD where M, is an integer. Let
us represent the messages of set {m(j)} by M equispaced points in a
D-dimensional typercube centered about the origin. Figure 3 illus-
trates this for the case M = 32 and D = 2.

We will associate the j"'l'1 message m () with the D-dimensional

(3

vector x joining the origin to the jth point on the lattice. The

coding scheme CS-1 can be described briefly as follows:

(A) Let x = x(j) if the message m(J) is to be transmitted to the receiver,.

seti=1.




(B)

(C)

(D)

(E)

The recursive equations for % (i) and x (i) are given below and a block
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At the ith step, the transmitter sends the vector u(i) A a(x-X (i))

where a is a scalar constant and x (i) will be described later.
The receiver has a measurement y(i) (D-vector)
y(i) = a(x-% (i)) +n (i)
Using this measurement, the receiver recursively computes the
vector X (i+l) to be described later. It sends back to the trans-
mitter the vector a X% (i+1).
The transmitter receives a measurement z(i+l) (D-vector)
z(i+l) = a X (i+l) + & (341
Using this measurement, the transmitter recursively computes
x (i+l) and hence a{x-X (i+l))

Increment i by one and go back to step (B)

% (i+l) = Maxiraum likelihood estimates of the vector
zrameter x at the receiver on the i
stage based on all the available measurements
till that stage i.e.,y(1l),vy(2),...,Vv(i).
X (i+1) = Maximum likelihood estimate (Kalman estima-

tor) of the random vector X (i+l) by the trans-
mitter based on all the measurements z(l),..

and the parameter x.

E[% ¢+ /a(l),..... , 2(il);  x]

diagram of the coding scheme is in Figure 4. It should be noted that

g(i), 6(i), p(i), q(i), and r(i) are all scalars

% (i+) =% (@) + € () vl

2(i) = (o pli) + o?;7 r o qliy2a r(i) "t (al)Hr(i))e

(10)

(11)

., z(i+l)

(12)

(14)




X X X 1
/M,

X X X [

X X X

FIG.3 REPRESENTATION OF THE M =32
MESSAGES ON A 2-CUBE.
CROSSES DENOTE MESSAGES.
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X (i+l) = x (i) + L(i) a (xrX (1)) + 0 (i+]) {z(i+])-eX (i) - aL(i)(x-% (i)} (13)

0) = pli) o / o

q(i+l) = {1-a €(i) }2q() + ¢2 () (o pli) + "7%}' 2a ¢ (1)r(i) {l-at(i)}

() + £200) &) o
p(i+l) = 5> 2
O +a {p(i) + fz (i) 0‘7;, }
r(i+l) = [ (1~a € (i)) (1-af (i+1)) r(i) - al(i)p(i) (1-a 8(i+1))

- o‘zn & (i) (1-a 0 (i+1) ]

It should be noted that (12) is stored at the receiver, (13) at the trans-
mitter and the deterministic difference equations (16)-(18) and the

definitions (14)-(15) are stored both at transmitter and the receiver.

III. ANALYSIS OF THE CODING SCHEME

Before we demonstrate the possibility of error free transmission,

we will analyse the ML (Maximum Likelihood) estimators at the

transmitter and the receiver, more closely. It should be emphasized

here that the ML estimator at the receiver and the ML (Kalman) estima-

tor at the transmitter are intimately related to each other, even though
they are treated separately here.

1. ML estimator of x at the receiver.

Define X (1) A %(i)-% (i)
= error in the optimal estimator
at the transmitter.

Then the equation for y(i) can be rewritten as:

yli) = a(x-% (1)) +{a X (i) +n (i)}

(15)

(16)

(17)

(18)

(19)
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Let X (i) = ML estimate of the parameter x at the receiver based

on the measurements y(l),..., y (i-1)

Let us try to compute % (i+l) from X (i) and y(i)

Let
Cov [x% ()] & ali)I
Cov[x(i)] A p(i) I (20)
E [(x-% (1) (K()7] 4 r) 1

But the noise a ;(i) occuring in (19) is not white, though Gaussian.
Therefore, while computing the MLE % (i+l), the correlation between
(x-% (i)) and % (i) has to be considered.

By definition, % (i+l) is obtained by minimizing J w.r.t u

T= ] (g @), @6+ i) [
Cqi) I ar(i) I -1
Ll,r(i) I (o.zp(i) + 0'2) I
-~ - . P o 2
=[] (u-% (1)), (y{i)-az+ak (1)) ||
q(i) I ar(i) I 5 71
axi) I (azp(i) + o‘i ) I
By the straightforward minimization, we obtain
X (i+l) = % (i) + &(1) y(1) (21)

where the scalar {(i) has been defined earlier in (14). At the ith stage,
error in the estimator = {x-% (i)} .
From (21) we can write the recursive relation for (x-% (i))

x-%(i+l) = {1-a C(i)} {x-% (1)}

- (22)
-8(i) (ax (i) +n(i))




From (22) and (20) we can obtain the recursive equation (16) for the
scalar q(i).

In the appendix it is shown that asymptotically

- /N N, N
q(i)= __271_ {1+2\/——b + 2 ——E} , —b . 1 and sufficiently small
ai No No NO

2. Optimal Estimator of X (i+l) at the Transmitter

Rewriting (21)

% (i+l) = % (i) + a §(i) (x-% (i) + £(i) n(i) (23)
Equation for the measurement z(i+l) is

z(i+l) = aXk (i+1) + E(i+]) (24)
We want to evaluate the ML estimator of the random vector X (i+l) given
the measurements z(l),...., z(i+l). Rewriting (23)

% (i+1) = ® (i) + ag(i) (x-% (1)) + X (i) + E(in() (25)
Hence, by definition, given X (i) and z(i+l), % (i+l) is obtained by

minimizing J w.r.t vector u

| s=lem@ratmex@ P fstees]® 26)
o 2y 2 2z
kp(l) +¢ (i) 0-77 O'E
Performing the minimization, we get
| X (i+l) = F(i) + al(i) (x-%(i)) +0(i+1) [z(i+]l)- aX(i)-al(i) (x-x(i))] (27)

where

O(i+l) = ap(i+1)/0'§
and the recursive equation for p(i) is given earlier.
It should be noted that

X(i+l) = E(% (i+]) /2(1), ..., z(i+]) ;x)
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since the ML estimator is identical with the Kalman-Bucy estimator.

Let
x (i) = % (i)~%(i) = error in the optimal estimate.

Subtracting (25) from (27) we get the difference equation for the error
% (i)

X (i+1) = X (i) {1- aB@+1)} +£(i) n(i) (i- @ 8(i+1))-0(i+l)E(i+1) (28)
we can derive the recursive relation for p(i) from (28) and the various
definitions. Alternatively, we can invoke the Kalman-Bucy theory to

get the relation (17). Similarly using (28) and (22), we can get the recur-

sive relation (18) for r(i)

Asymptotically
2 =
o N - N,
. b 3
pl) = VRS (1 F/=2 ) , (/N <1
(vl (o] O
2
o ./ N N
i) = -0\ /b 3 \/b
ri) = -GV W S\ ) ,  (Ny/N) <1
a1 o) o]

These relations have been proved in the appendix 1.

From these we obtain (in appendimzx)

v N N
E[(x-% (i)) (x-%(i)1] = —2?-{ 1 +\/Wb- + —21— ‘N—b}I (29)
al (o] O

3. Determination of the Criticle Transmission Rate R_

THEOREM:
Let PAV be the constraint on the average transmitted power.
Let (NO/Z) and (Nb/Z) be respectively the two-sided spectral densities

of the additive white Gaussian noises in the forward and backward channel

respectively. Suppose one of M A exp(RT) messages has to be trans-
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mitted over a time T seconds (where R is known as the transmission
rate). Suppose the coding scheme mentioned in Section II is used and

the maximum likelihood decision rule is used to obtain the decision.

Let Pe(M’ T) be the probability of error. Then there exists a constant

Rc such that
o R< Rc
Lim Pe (M = exp (RT), T) = if
T | 1 >R
| c
\
An approximate expression for Rc is
P
1 AV
Rc =( —)- { N )
N
1?—\/—li + L _P °
N0 2 N

o

Proof: Suppose that during the time T , N measurements y(l),...,y(N)
have been taken at the receiver, the latest measurement being y(N).
Since all the M messages are equally probable, the decision rule d(")

at the receiver is:
d& vy = mB i | D) - g ey, | ] g e |

Vi=l,...,D and V¥ k=1,...,M.

aE (N#) = mP) ir - 1/2m) < - (e, < 1/2M

vi=l,..., D

where M, = Ml/D (an integer)
1 cr2 1 -\//Nb
Recall that Cov (x-x (N+1))::—-—T]-aZ ~ (1+kq) , where kq = 2 -—I\T(;—

Let the probability of error A Pe (M, T)
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o'u
0

1-P (M, T)

% (N+1) + (1/2M1)

e 2
= VNa exp{ - —7— (u. - X, (N+1))2}du
\/(21; )o‘ (1+k,) 20 (1+kq)

% (N+1) - (1/2M1)

{erf( a VN ) ﬁ’

. }
M
2Veg Vik, 1
Let M(T)A exp (RT) = ND(17€)/2
2.D
P = {erf(—_-—-—a—‘—-—— Ns/ )}
¢ szan\/ Ltk
Hence 0 e> 0
Lim B (M, T)= L if
T+ 1 <0

Therefore, the optimal signalling rate Rc is obtained by setting

M(T) = NP/2

InM(T) D#aN

R T - 2T (30)

C

>

PAV = the average transmitted power

T
=E [1T§ sz(t)dt]

o

N
-+ED o x=xm |4

i=

Let us assume that xj is uniformly distributed in the interval (-1/2 1/2)

for every j=1,..... , D. Since % (1)=0 E(x ) = 1/12 for all j=1, D .




we know from (29) that

Dcr2 /N N
E " x-x(1) ”~ azi (1-‘- No + > —N—) é o /(u i)
o
where N.
2, 2 1 Ny
o4 o { IWN /N + 3 N }
2 2 N
- aDr 1l . o Ry
Pav= T L1z * az(zi: Tt A

where Al is thererror due to the use of approximation formula.

But E -.Lzln N+ A, , A, = Euler-Maschorini constant
i=1 !

Substituting for T from (30) we get

ZRC 2 uZ 2
Pov= o (& N+ 5 +0 (A +4,)} (31)
Hence Lim P,,, = 2R 0'2
N—- AV <

From the definition of o-2 , we obtain

_ 1 _ AV
R, =( N T ) (——N )
15 /—P 4 1 b o
N, 2 N

IV. PROPERTIES OF THE CODING SCHEME CS-1

1. Probability of error P for finite T with an optimal choice for the

gain _a .
Let

and
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For given a and large T the probability of error is given by

VN

P =1- {erf( 2 )} (32
e o 2N, (L+k,) MmY/D )

Let M = eRT

From (31) we obtain

2
_D a 1
c==+1 LN, * 7, (n N + A + Ay)]

Rewriting the above equation by neglecting A1 and Az, we have

2
T
N~exp [2C, (—%— - o] (33)
O

Substituting for N from (33) in (32) and minimizing the overall
expression for Pe with respect to a we get the optimal value of a as
6N
2 _ o
%opt = T, (34)
We can substitute the value of aopt in (32) and simplify it by noting
that in the expression for N given by (33), (aZ/IZNo) can be neglected

w.r.t (CT/D)

A aopt _\/1\_*

Let

v
opt
2N, (+k,) Mm/D
R -R)T
_ 3 1 1/2 c
{3 C, Tk ) } exp { =5}
3 1/2

1

(52)  exp { (-1 )




where

(35) is the basic expression for the prdbability of error for
finite T. Note that for given T , N can be determined from (33) and

hence (T/N), the time per iteration is also determined.

_15..

1-{ erf (vopt) }D

~[D exp (-vozpt)] AT Vot

D exp | ic_,, exp {(1';'(:‘ -1) 'Z—S—T}]
5 e (= -y RI)

2. Noiseless Feedback Channel

Here §(i) = 0 and hence

Gov [E()] & 0% =0

Cov [x ()] A P(i)I =0

E[{x-% @} T 1ar@) 1=0

In this case, the recursive formula (13) becomes

X (i+l)

Since 8(i+l) = 1/

Vi<

(35)
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Correspondingly, the weighting factor ¢(i) in (12) becomes
¢(i) = 1/ai

In other words, (12) becomes

% (i4) = % (1) + 37 ¥() (36)
This coding scheme will be referred to as CS-2

This simplified coding scheme is given in figure (5). Note that in

this scheme RC = C and that the expression (34) for probability of

error (when time T is finite) can be simplified by noting that C3 = 1.

This coding scheme is nothing but an extension of the coding

scheme in [6] to D-dimensional signals.
V. ALTERNATE CODING SCHEME FOR NOISY CHANNEL

This coding scheme is very similar to the one considered all
along except that the recursive formulae for % (i) and X (i) are simpler.

This coding scheme will be referred to as CS-3 .

% (i+1) = % (i) + 311— (i) (37)
(i) = =) + 220 4 BEHS 1564 -0%() - -——U"f O (38)
3

where {p(i) +((,_.?. /{IZiZ)} 0_2

n £
p(i+]) = — (39)

crg + o.zp(i) + —gz—
~ i

In this case the critical rate R, is given by the same formula as before.
The error covariance Cov [x-% (i)] which determines the error prob-

ability is given by the relation
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0'2 N N
Cov [x-% (i)] = ;—2—?— [1+“2\/ 'Ni + —NR] I (40)
[o] [o]

The other relevant covariance matrices are given below:

2 N
~ L JUEN /Nb 1 Nb
C 3 - __ﬂ. | — — —— 1 41
OV[X (1)] aZi [v No + 3 No ] (41)
o vy T _‘_’g_ N 1
Bl @) R @) )= 2= Vg + 7 - 11 (42)
o) o
2
o - IN N.
Cov [x-% (i)] = ——2— [ l+\/—1\-13- + -21:— -N—-b—] I (43)
ai o o}

The derivations of these formulae can be found in Appendix 2.
As before, an expression can be found for the probability of error
when time T 1is finite and we can choose the gain a to minimize this

probability of error. The expression for the gptimal value of the

gain, % pt? is given below
2
%opt © 6 No/CZ

The probability of error is givenby the formula:

R
RT Dexp [ =5 Cyexp (1) 2R2]
B (M=e"T, T) = (44)
37 C R
oy, 3 c ., RT
) exp {{ g— -1 5}
N N

b 1 b

where 1 'Wo_ + 5 N
C, = (45)

3 b ., b

1+2 N + 2 N

o o)

The details are omitted since they are very similar to the ones used

earlier.
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The most intriguing feature of this coding scheme is that the

probability of error is less than that for CS-1 for Same T and other
parameters. This is due to the fact that Cov [x-i(i)] for CS-3 is
slightly smaller than the correspcnding quantity in CS-1. Even though
this is intriguing, it can be easily explained by noting that the maxi-
mum likelihood estimate X (i) in CS-1is computed from a set of
dependent measurements vy(l},..., y(i-1) and in this case the MLE
estimate is not 2 minimum variince estimate. It is interesting to note
that the estimate X% (i) of x in CS$S-3 is obtained by minimizing J with
respect to u.

i-

1
T=E [Zj=1 | yi-e -z Gy I%/m .., ytin)

Hence the estimate % (i) in CS-3 can be looked upon as the minimum
variance estimate and hence its variance must be less than that of X (i)

in CS-1 which is a MLE.

VI. COMPARISON
The best codes which use only the forward channel are the
simplex codes which behave like the orthcgonal codes for large M. For

these codes, the probability of errnr is bounded by (46) {7]

2 RT
< - A S
log)gF, < log)y" - ER) (logelo)
where 1 C
(5 ® D if 0<R/C < 1/4
E'R)=
Vs -y if 1/4 < R/C <1

and RT A fn M = amount of informationto be conveyed over a period of T seconds.
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In the coding scheme CS-1

R
) 2 ) 3 . . 2RT
logoFe = logg (\/31r c, D) - Ulogyge) 3 C3 exp{(§ -1 =5

where 14 /Nb : 1l Nb
No 2 N

Cy = o
N N

b b

L nb o te

NO NO

In the coding scheme CS-3

2 R
log. ..P  =log D) - (logyne) (¢ 4, RT
107e 10 31 C, 10% V== -1) S5
R
- 3 € _j) ZRT
(logjge) 5~ Cyexp {{ ¢ -1) F-}
where Nb 1 Nb
15— + 5~ =
N 2 N
O [¢]
C3:
~ /N N
b b
LroV + w
(o] o]
and
R - C
) el Do /M ; C AP, /N
2 NO No ’ = TAV o

Inspection of expressions (46)-(50) establishes unambiguously the

superiority of the coding schemes CS-1and CS-3 over the orthogonal
codes. In Figure 6, for a fixed R/C and D, the probability of error is
plotted on a logarithmic scale versus (RT) in nats for various values

of (Nb/No), the ratio of feedback noise power to forward noise power.

(47)

(48)

(49)

(30)
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Ancther way of comparison is to compare the time delay T

required to acheive the same probability of error for the different

coding schemes.

Let 7

pe=1><10' , R/C=0.6 , C=1nat/sec , D=l

Let N = 10 joules. We can obtzin the corresponding value of RT in
nats from the formulae given earlier and hence compute the time delay

T for the same probability of error for the different coding schemes.

Simplex codes: RT = 183.5 nats ; T = 306 seconds

Coding Schemes CS-l1 and CS-3

_ljl) E: Scheme CS-1 Scheme CS-3
No C RT T secs RT T secs
0.1 0.732 5.825 9.7 5.65 9.42
0.02 0.87 2.7 4.5 2.64 4.4
0.0 1.0 1.68 2.79 1.68 2.79

We will also make 2 few remarks on the advantages and disad-
vantages of having a large D, the dimensions of the elementary signals
in the feedback ceding scheme. it is evident from (47) that for same
RT, larger D implies smaller Pe . In order to offset this fact, consider the
number of iterations N which cccur in time T.

2R. Rt )

N=ep {5 -3

For fixed RT, larger D implies smaller N. In other words, the ratio of
T/N, the time per iteration or the "pulse width" will increase with D.

This clearly is an advantage since this reduces the "cost" of the system in

some sense.




N
b .018 cs-1

0.5 10 20 3.0 4.0 5.0 6.0
—RT IN NATS

FIG. 6: PROBABILITY OF ERROR P, AS A FUNCTION
OF THE AMOUNT OF INFORMATION (RT) IN
NATS FOR VARIOUS VALUES OF (Np/Ng)
USING THE CODING SCHEMES CS-1 AND
CS-3.



VII. CONCLUSIONS

Feedback coding schemes using a noisy feedback channel and
D-dimensional elementary signals have been developed in which to
achieve a zero error transmission rate RC nearly equal to the
channel capacity C. We have also analyzed their performance when
the transmission time T is finite and showed their superiority over
traditional methods.

The only drawbacks of the coding schemes are the requirements

of infinite bandwidth for the signal and infinite power at the receiver

if time T is infinite. But for finite time T both these objections

are not applicable. Moreover, in many space communication problems
there is no limit on the available power or the receiver. Hence, the
only important drawback is the requirement of infinite bandwidth for
the signal. Methods of overcoming these disadvantages are presently

under consideration.

_21_
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APPENDIX I

The asymptotic expression for the solution of the difference
equations (16)-(18) will be given here.

It is not too hard to show that the homogeneous difference
equations (16)-(18) have zero as the equilibrium state. Hence, p(i),

q(i) and r(i) will be expanded in power series in terms of +

Let e 1 T
ali) = ZL i (k) + 06
o j,z_ 1 1
P = =& F k4 O (A-1)
0_2
W=~ Tk o+ o)

2 2
Let wg/o'n A Nb'/No A Ko

From (A-1), one can easily show that

. 1 1
al(i) = (kg + k) 5 +0 ()
K (A-2)
f(i)a = Rfo% + 0 ()

Moreover, we will use the following expansion throughout

the Appendix.

A1 1 1
s > t0(73)
1 1

a.

T By definition, a, A 0(b,) if Lim — =0
1 = 1 . . .
1->00 1

-23-
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From (16) , using (A-1) and (A-2) , we get

1 _1 ., _¢Ll 1 2_
(L4 ) i-z-) = [3- (k) *;‘z‘ {(1+kq+kr) 214+ ) (14 )

1
“2(Lbk #k,) (L4k ) '?-kr(1+kq+kr>} + o(i_z')]

on either side of the above equation, we get

Equating the coefficients of >
i
(A-3)

2 _
(kqtk, )" + (ko +2kr) = 0

Let us consider equation (17).

1 1 2
X ) Kool kot =z (1+kq+kr) } .
kol - 20 I T -t 0 ()
i (K, + T+ =z (kg +k, ) } i
1 1 2 1 .2 1
= Tt i—?_—{(l+kq+kr) —R—bo K, } o+ 0(? )

Equating the coefficients of '-]-‘Z on both sides of the above equation, we get
i
(A-4)

2 2
K 7 Ky Ky = (k)" Ky =0

Let us simplify (18)
k kr 2
2T 4 (1+k +k_.) kp + (1+kq+kr) }

Kbo q

- {avk_+k_) k_ +
2 VT q r! Xy

T
i

1 1 1
ki - = [Tk
1
1
+0 ()]
1

Equating the coefficients of (-17-) on both sides of the above equation, we get
i

k k
r
[1+k_+ —Ig’;; + 2k He,) kgt ) (kg + 2k 4k ) = 0] (A-5)
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We have to solve (A-3)-(A-5) simultaneously for kp’kq and kr' The

simplest way is to assume power series solutions for all of them in

terms of \/Kbo .

Let
VKbo =d
Let
2 2
kp = g1d+g2d + 0(d")
k_ = g.d+g,d%+ 0(a%) A-6)
r - 83978 (

2 2
k,q = g5d+g6d + 0(d")

Parameters g through g¢ have to be determined. Substitute (A-6) in
(A-3) and equate the coefficients of the two most significant powers of d

on \either side of equation

g5+2g3 =0
> (A-T)
g6+zg4+(g5+g3) =0
Repeating the same process with (A-4) and (A-6) we get
gl2 -1=0
(A-8)
2818, - 8 ~ 2 (g3%85) = 0
Repeating the same process with (A-5) and (A-6), we get
883 = !
(A-9)

g2g3+g1g4+g1+2(g3+g5) =0
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Solving the equations (A-7) - (A-9) for 8)s---s By We get
gl =1 g3 = -1 g5 =2
g2=3/2 g4:-3/2 g6:2

Hence 2 2

~ . " Mo . 3
Cov [x (1) ]~ o.zi kP - azi ( Kbo v 7 Kbo)I
2
g
Cov [ x~% (i)]=—5 (l+k,) I
ai q
0_2
S/ -
= azi (1+2 ‘/Kbo + ZKbo) I
2
- ~ .o 7
E[ {x-% (1)} {x @)} ]_:—-—2’} k1
al

2
o

___n 3

= uZi(VKbo+2 Kio! !

Finally

Cov [x-% (1)] A Cov [x~% (i) + X (i)]

2
a

= - (1+k_+k
QZi( QP

+2k )1




APPENDIX 2

We will establish the covariance formula (40-43) for coding
scheme CS-3 by following the methods similar to those in Appendix 1.
We will use the expansions (A-1) in Appendix 1.

We know that

¢(i) = 1/ai
We can easily show that
1 5 1
b(i)a = ~— - t0(5)

bo
From (16) , using (A-1) , we get

1 _1,_rL1l 1 - - 1
(L+k ) (- 2 y=1[3 (L+kg) + 2 {1 2(1+k ) 2k} + 0( 2 )]
Equating the coefficients ofl2 on either side we get

i

kqt2k, = 0 (A-10)

Let us simplify (17) using (A- 1)
Kbo{ i k + }

1 1 1
Yl ) = + ()
pri 1 L ;
i Kbo+ T kp+ iZ i
1 1 { kEZ 1
~——k_ +—511- } + O )
1P i2 Kbo 17

Equating the coefficients of —lz on either side, we get
i

2 _ -
{kp - Ky, kp - Kbo} =0 (A-11)
Let us simplify (18) using (A-1)

1 1, 1 ____ _R__r 1
k(= -i-z)_[-i-—kr v {k +Kbo+kp+1}+0(?:)]
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Equating the coefficients of ( 5-) on both sides of the above equation,
1
we get

k_k
{1+ x +—2F} =0 (A-12)
P Kbo

Comparing (A-11) and (A-12), we get

k. =- kp (A-13)
Solving for kp from (A-11) and retaining terms‘\/K—bo apd Kio s We get
ke =VEy + ‘.12— :
k= Vo -
= VR, v Ky

These relations in conjunction with (A-1) give the expressions (40)-(42).

In order to prove (43) note that

Cov [x-X (i)] A Cov [x-% (i) + X (i)]

{q(i) + pi) +2r(i) } I
o2
_71 2
=, { 1+kq+kp+ k.} I
2
_n 1
- A+ VK, +5 Kl l

al
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